The effects of floor incline on lower extremity biomechanics during unilateral landing from a jump in dancers.

نویسندگان

  • Evangelos Pappas
  • Karl F Orishimo
  • Ian Kremenic
  • Marijeanne Liederbach
  • Marshall Hagins
چکیده

Retrospective studies have suggested that dancers performing on inclined ("raked") stages have increased injury risk. One study suggests that biomechanical differences exist between flat and inclined surfaces during bilateral landings; however, no studies have examined whether such differences exist during unilateral landings. In addition, little is known regarding potential gender differences in landing mechanics of dancers. Professional dancers (N = 41; 14 male, 27 female) performed unilateral drop jumps from a 30 cm platform onto flat and inclined surfaces while extremity joint angles and moments were identified and analyzed. There were significant joint angle and moment effects due to the inclined flooring. Women had significantly decreased peak ankle dorsiflexion and hip adduction moment compared with men. Findings of the current study suggest that unilateral landings on inclined stages create measurable changes in lower extremity biomechanical variables. These findings provide a preliminary biomechanical rationale for differences in injury rates found in observational studies of raked stages.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Relationship of Anatomical Alignment and Strength of Some Lower Extremity Muscles with Jump-landing Biomechanics: A Landing Error Scoring System Study

Background: The purpose of the present study was to investigate correlative and predictive relationship of lower extremity anatomical alignment, isometric hip abduction and external rotation strength with jump-landing biomechanics using Landing Error Scoring System (LESS). Methods: Anatomical alignment and isometric lower extremity muscle strength of 30 active...

متن کامل

Comparison of landing biomechanics between male and female professional dancers.

BACKGROUND The incidence of anterior cruciate ligament injuries among dancers is much lower than that among team sport athletes and no clear gender disparity has been reported in the dance population. Although numerous studies have observed differences in lower extremity landing biomechanics between male and female athletes, there is currently little research examining the landing biomechanics ...

متن کامل

Biomechanical Comparison of Single- and Double-Leg Jump Landings in the Sagittal and Frontal Plane

BACKGROUND Double-leg forward or drop-jump landing activities are typically used to screen for high-risk movement strategies and to determine the success of neuromuscular injury prevention programs. However, research suggests that these tasks that occur primarily in the sagittal plane may not adequately represent the lower extremity biomechanics that occur during unilateral foot contact or non-...

متن کامل

ارتباط سفتی اندام تحتانی با متغیرهای منتخب بیومکانیکی در اجرای پرش‌های عمودی مردان فعال سالم

Objective: Stiffness is a characteristic of viscoelastic structures and is an effective factor in sports movement biomechanics, which is an important factor in motion production and neuromechanical control of human body. The purpose of this study is to determine the relationship between lower extremity stiffness and selected biomechanical variables during vertical jumps. Methods: 20 male physi...

متن کامل

Neuromuscular Training Improves Lower Extremity Biomechanics Associated with Knee Injury during Landing in 11–13 Year Old Female Netball Athletes: A Randomized Control Study

The purpose of this study was to examine the effects of a neuromuscular training (NMT) program on lower-extremity biomechanics in youth female netball athletes. The hypothesis was that significant improvements would be found in landing biomechanics of the lower-extremities, commonly associated with anterior cruciate ligament (ACL) injury, following NMT. Twenty-three athletes (age = 12.2 ± 0.9 y...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of applied biomechanics

دوره 28 2  شماره 

صفحات  -

تاریخ انتشار 2012